Sign-Changing Blow-Up for Scalar Curvature Type Equations
نویسندگان
چکیده
منابع مشابه
Sign-changing Blow-up Solutions for Yamabe Problem
Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. We are concerned with the following elliptic problem ∆gu+ hu = |u| 4 n−2−εu, in M, where ∆g = −divg(∇) is the Laplace-Beltrami operator on M , h is a C1 function on M , ε is a small real parameter such that ε goes to 0.
متن کاملBlow-up in the Parabolic Scalar Curvature Equation
The parabolic scalar curvature equation is a reaction-diffusion type equation on an (n − 1)-manifold Σ, the time variable of which shall be denoted by r. Given a function R on [r0, r1)×Σ and a family of metrics γ(r) on Σ, when the coefficients of this equation are appropriately defined in terms of γ and R, positive solutions give metrics of prescribed scalar curvature R on [r0, r1)× Σ in the fo...
متن کاملChanging blow-up time in nonlinear Schrödinger equations
Abstract Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic poten...
متن کاملBlow - up Solutions for Gkdv Equations with K Blow
In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2013
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2012.745552